122 research outputs found

    Rationale for the Cytogenomics of Cardiovascular Malformations Consortium: A Phenotype Intensive Registry Based Approach

    Get PDF
    Cardiovascular malformations (CVMs) are the most common birth defect, occurring in 1%-5% of all live births. Although the genetic contribution to CVMs is well recognized, the genetic causes of human CVMs are identified infrequently. In addition, a failure of systematic deep phenotyping of CVMs, resulting from the complexity and heterogeneity of malformations, has obscured genotype-phenotype correlations and contributed to a lack of understanding of disease mechanisms. To address these knowledge gaps, we have developed the Cytogenomics of Cardiovascular Malformations (CCVM) Consortium, a multi-site alliance of geneticists and cardiologists, contributing to a database registry of submicroscopic genetic copy number variants (CNVs) based on clinical chromosome microarray testing in individuals with CVMs using detailed classification schemes. Cardiac classification is performed using a modification to the National Birth Defects Prevention Study approach, and non-cardiac diagnoses are captured through ICD-9 and ICD-10 codes. By combining a comprehensive approach to clinically relevant genetic analyses with precise phenotyping, the Consortium goal is to identify novel genomic regions that cause or increase susceptibility to CVMs and to correlate the findings with clinical phenotype. This registry will provide critical insights into genetic architecture, facilitate genotype-phenotype correlations, and provide a valuable resource for the medical community

    Coarctation of the aorta and mild to moderate developmental delay in a child with a de novo deletion of chromosome 15(q21.1q22.2)

    Get PDF
    BACKGROUND: Deletion of 15q21q22 is a rare chromosomal anomaly. To date, there have been nine reports describing ten individuals with different segmental losses involving 15q21 and 15q22. Many of these individuals have common features of growth retardation, hypotonia and moderate to severe mental retardation. Congenital heart disease has been described in three individuals with interstitial deletion involving this region of chromosome 15. CASE PRESENTATION: We report a child with coarctation of the aorta, partial agenesis of corpus callosum and mild to moderate developmental delay, with a de novo deletion of 15q21.1q22.2, detected by the array Comparative Genomic Hybridization (CGH). We utilized chromosome 15-specific microarray-based CGH to define the chromosomal breakpoints in this patient. CONCLUSION: This is the first description of mapping of an interstitial deletion involving the chromosome 15q21q22 segment using the chromosome 15-specific array-CGH. The report also expands the spectrum of clinical phenotype associated with 15q21q22 deletion

    SNP genotyping to screen for a common deletion in CHARGE Syndrome

    Get PDF
    BACKGROUND: CHARGE syndrome is a complex of birth defects including coloboma, choanal atresia, ear malformations and deafness, cardiac defects, and growth delay. We have previously hypothesized that CHARGE syndrome could be caused by unidentified genomic microdeletion, but no such deletion was detected using short tandem repeat (STR) markers spaced an average of 5 cM apart. Recently, microdeletion at 8q12 locus was reported in two patients with CHARGE, although point mutation in CHD7 on chromosome 8 was the underlying etiology in most of the affected patients. METHODS: We have extended our previous study by employing a much higher density of SNP markers (3258) with an average spacing of approximately 800 kb. These SNP markers are diallelic and, therefore, have much different properties for detection of deletions than STRs. RESULTS: A global error rate estimate was produced based on Mendelian inconsistency. One marker, rs431722 exceeded the expected frequency of inconsistencies, but no deletion could be demonstrated after retesting the 4 inconsistent pedigrees with local flanking markers or by FISH with the corresponding BAC clone. Expected deletion detection (EDD) was used to assess the coverage of specific intervals over the genome by deriving the probability of detecting a common loss of heterozygosity event over each genomic interval. This analysis estimated the fraction of unobserved deletions, taking into account the allele frequencies at the SNPs, the known marker spacing and sample size. CONCLUSIONS: The results of our genotyping indicate that more than 35% of the genome is included in regions with very low probability of a deletion of at least 2 Mb

    Loss-of-function mutations in Lysyl-tRNA synthetase cause various leukoencephalopathy phenotypes

    Get PDF
    Objective: To expand the clinical spectrum of lysyl-tRNA synthetase (KARS) gene–related diseases, which so far includes Charcot-Marie-Tooth disease, congenital visual impairment and microcephaly, and nonsyndromic hearing impairment. Methods: Whole-exome sequencing was performed on index patients from 4 unrelated families with leukoencephalopathy. Candidate pathogenic variants and their cosegregation were confirmed by Sanger sequencing. Effects of mutations on KARS protein function were examined by aminoacylation assays and yeast complementation assays. Results: Common clinical features of the patients in this study included impaired cognitive ability, seizure, hypotonia, ataxia, and abnormal brain imaging, suggesting that the CNS involvement is the main clinical presentation. Six previously unreported and 1 known KARS mutations were identified and cosegregated in these families. Two patients are compound heterozygous for missense mutations, 1 patient is homozygous for a missense mutation, and 1 patient harbored an insertion mutation and a missense mutation. Functional and structural analyses revealed that these mutations impair aminoacylation activity of lysyl-tRNA synthetase, indicating that de- fective KARS function is responsible for the phenotypes in these individuals. Conclusions: Our results demonstrate that patients with loss-of-function KARS mutations can manifest CNS disorders, thus broadening the phenotypic spectrum associated with KARS-related disease

    2-Pyrrolidinone and Succinimide as Clinical Screening Biomarkers for GABA-Transaminase Deficiency: Anti-seizure Medications Impact Accurate Diagnosis

    Get PDF
    Broad-scale untargeted biochemical phenotyping is a technology that supplements widely accepted assays, such as organic acid, amino acid, and acylcarnitine analyses typically utilized for the diagnosis of inborn errors of metabolism. In this study, we investigate the analyte changes associated with 4-aminobutyrate aminotransferase (ABAT, GABA transaminase) deficiency and treatments that affect GABA metabolism. GABA-transaminase deficiency is a rare neurodevelopmental and neurometabolic disorder caused by mutations in ABAT and resulting in accumulation of GABA in the cerebrospinal fluid (CSF). For that reason, measurement of GABA in CSF is currently the primary approach to diagnosis. GABA-transaminase deficiency results in severe developmental delay with intellectual disability, seizures, and movement disorder, and is often associated with death in childhood. Using an untargeted metabolomics platform, we analyzed EDTA plasma, urine, and CSF specimens from four individuals with GABA-transaminase deficiency to identify biomarkers by comparing the biochemical profile of individual patient samples to a pediatric-centric population cohort. Metabolomic analyses of over 1,000 clinical plasma samples revealed a rich source of biochemical information. Three out of four patients showed significantly elevated levels of the molecule 2-pyrrolidinone (Z-score ≥ 2) in plasma, and whole exome sequencing revealed variants of uncertain significance in ABAT. Additionally, these same patients also had elevated levels of succinimide or its ring-opened form, succinamic acid, in plasma, urine, and CSF and/or homocarnosine in urine and CSF. In the analysis of clinical EDTA plasma samples, the levels of succinamic acid and 2-pyrrolidinone showed a high level of correlation (R = 0.72), indicating impairment in GABA metabolism and further supporting the association with GABA-transaminase deficiency and the pathogenicity of the ABAT variants. Further analysis of metabolomic data across our patient population revealed the association of elevated levels of 2-pyrrolidinone with administration of vigabatrin, a commonly used anti-seizure medication and a known inhibitor of GABA-transaminase. These data indicate that anti-seizure medications may alter the biochemical and metabolomic data, potentially impacting the interpretation and diagnosis for the patient. Further, these data demonstrate the power of combining broad scale genotyping and phenotyping technologies to diagnose inherited neurometabolic disorders and support the use of metabolic phenotyping of plasma to screen for GABA-transaminase deficiency

    Phenotypic and molecular characterisation of CDK13-related congenital heart defects, dysmorphic facial features and intellectual developmental disorders

    Get PDF
    Background: De novo missense variants in CDK13 have been described as the cause of syndromic congenital heart defects in seven individuals ascertained from a large congenital cardiovascular malformations cohort. We aimed to further define the phenotypic and molecular spectrum of this newly described disorder. Methods: To minimise ascertainment bias, we recruited nine additional individuals with CDK13 pathogenic variants from clinical and research exome laboratory sequencing cohorts. Each individual underwent dysmorphology exam and comprehensive medical history review. Results: We demonstrate greater than expected phenotypic heterogeneity, including 33% (3/9) of individuals without structural heart disease on echocardiogram. There was a high penetrance for a unique constellation of facial dysmorphism and global developmental delay, as well as less frequently seen renal and sacral anomalies. Two individuals had novel CDK13 variants (p.Asn842Asp, p.Lys734Glu), while the remaining seven unrelated individuals had a recurrent, previously published p.Asn842Ser variant. Summary of all variants published to date demonstrates apparent restriction of pathogenic variants to the protein kinase domain with clustering in the ATP and magnesium binding sites. Conclusions: Here we provide detailed phenotypic and molecular characterisation of individuals with pathogenic variants in CDK13 and propose management guidelines based upon the estimated prevalence of anomalies identified. Keywords: CDK13, CHDFIDD, De novo variant, Neurodevelopmental disorders, Agenesis of the corpus callosum, Hypertelorism, Developmental delay, Cyclin-dependent kinase, Undiagnosed Diseases Networ

    Genetic architecture of laterality defects revealed by whole exome sequencing

    Get PDF
    Aberrant left-right patterning in the developing human embryo can lead to a broad spectrum of congenital malformations. The causes of most laterality defects are not known, with variants in established genes accounting for <20% of cases. We sought to characterize the genetic spectrum of these conditions by performing whole-exome sequencing of 323 unrelated laterality cases. We investigated the role of rare, predicted-damaging variation in 1726 putative laterality candidate genes derived from model organisms, pathway analyses, and human phenotypes. We also evaluated the contribution of homo/hemizygous exon deletions and gene-based burden of rare variation. A total of 28 candidate variants (26 rare predicted-damaging variants and 2 hemizygous deletions) were identified, including variants in genes known to cause heterotaxy and primary ciliary dyskinesia (ACVR2B, NODAL, ZIC3, DNAI1, DNAH5, HYDIN, MMP21), and genes without a human phenotype association, but with prior evidence for a role in embryonic laterality or cardiac development. Sanger validation of the latter variants in probands and their parents revealed no de novo variants, but apparent transmitted heterozygous (ROCK2, ISL1, SMAD2), and hemizygous (RAI2, RIPPLY1) variant patterns. Collectively, these variants account for 7.1% of our study subjects. We also observe evidence for an excess burden of rare, predicted loss-of-function variation in PXDNL and BMS1- two genes relevant to the broader laterality phenotype. These findings highlight potential new genes in the development of laterality defects, and suggest extensive locus heterogeneity and complex genetic models in this class of birth defects

    Lessons learned from additional research analyses of unsolved clinical exome cases

    Get PDF
    BACKGROUND: Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery. METHODS: We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e. unsolved clinical exomes). Such cases were recruited to a research laboratory for further analyses, in order to potentially: (1) accelerate novel disease gene discovery; (2) increase the molecular diagnostic yield of whole exome sequencing (WES); and (3) gain insight into the genetic mechanisms of disease. Pilot project data included 74 families, consisting mostly of parent-offspring trios. Analyses performed on a research basis employed both WES from additional family members and complementary bioinformatics approaches and protocols. RESULTS: Analysis of all possible modes of Mendelian inheritance, focusing on both single nucleotide variants (SNV) and copy number variant (CNV) alleles, yielded a likely contributory variant in 36% (27/74) of cases. If one includes candidate genes with variants identified within a single family, a potential contributory variant was identified in a total of ~51% (38/74) of cases enrolled in this pilot study. The molecular diagnosis was achieved in 30/63 trios (47.6%). Besides this, the analysis workflow yielded evidence for pathogenic variants in disease-associated genes in 4/6 singleton cases (66.6%), 1/1 multiplex family involving three affected siblings, and 3/4 (75%) quartet families. Both the analytical pipeline and the collaborative efforts between the diagnostic and research laboratories provided insights that allowed recent disease gene discoveries (PURA, TANGO2, EMC1, GNB5, ATAD3A, and MIPEP) and increased the number of novel genes, defined in this study as genes identified in more than one family (DHX30 and EBF3). CONCLUSION: An efficient genomics pipeline in which clinical sequencing in a diagnostic laboratory is followed by the detailed reanalysis of unsolved cases in a research environment, supplemented with WES data from additional family members, and subject to adjuvant bioinformatics analyses including relaxed variant filtering parameters in informatics pipelines, can enhance the molecular diagnostic yield and provide mechanistic insights into Mendelian disorders. Implementing these approaches requires collaborative clinical molecular diagnostic and research efforts

    Haploinsufficiency of PRR12 causes a spectrum of neurodevelopmental, eye, and multisystem abnormalities

    Get PDF
    PURPOSE: Proline Rich 12 (PRR12) is a gene of unknown function with suspected DNA-binding activity, expressed in developing mice and human brains. Predicted loss-of-function variants in this gene are extremely rare, indicating high intolerance of haploinsufficiency. METHODS: Three individuals with intellectual disability and iris anomalies and truncating de novo PRR12 variants were described previously. We add 21 individuals with similar PRR12 variants identified via matchmaking platforms, bringing the total number to 24. RESULTS: We observed 12 frameshift, 6 nonsense, 1 splice-site, and 2 missense variants and one patient with a gross deletion involving PRR12. Three individuals had additional genetic findings, possibly confounding the phenotype. All patients had developmental impairment. Variable structural eye defects were observed in 12/24 individuals (50%) including anophthalmia, microphthalmia, colobomas, optic nerve and iris abnormalities. Additional common features included hypotonia (61%), heart defects (52%), growth failure (54%), and kidney anomalies (35%). PrediXcan analysis showed that phecodes most strongly associated with reduced predicted PRR12 expression were enriched for eye- (7/30) and kidney- (4/30) phenotypes, such as wet macular degeneration and chronic kidney disease. CONCLUSION: These findings support PRR12 haploinsufficiency as a cause for a novel disorder with a wide clinical spectrum marked chiefly by neurodevelopmental and eye abnormalities
    corecore